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Graphs on n vertices are classified into equivalence classes under the linear 
group L(n). All graphs representing the same operator on a vector space V, 
belong to the same class. Graphs of different operators may or may not belong 
to the same class as ascertained by rules that were given by the author. Graphs 
in the same class are "structurally covariant".  If, in addition, two graphs can 
be continuously deformed into each other in the sense of  varying line strengths 
while remaining structurally covariant throughout, then the two graphs are 
termed "deformationally covariant" along such paths. Applications in the 
quantum theory of chemistry and to the dynamic stability theory of coupled 
reaction systems which occur in various fields are indicated. 
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In a previous paper  [1], a correspondence was established between algebraic 
structures built on a vector space I/', and graphs of several kinds. In particular 
the space containing the linear operators { Q} on V, is associated with a collection 
of graphs, directed graphs for arbitrary linear operators, non-directed ones with 
Hermitian operators. By "graph"  we shall mean below the non-directed ones. 
Graphs may contain loops. Multi-graphs which would have multiple lines between 
a pair of  vertices are not needed for our purpose here since each line may be 
assigned a "strength", commonly a + or - real number (in general could be 
complex too) corresponding to the algebraic sum of multilines between that vertex 
pair. Vertices represent vectors or their duals of  V~ or V~ or the kets or bras of  
Dirac, etc. depending on the application intended. 

The set of  graphs {Go} on Vn, on n vertices, and {Q}, form a complete bilinear 
vector space (or a dyad space) if the strengths {q} of the lines of  (3, taken here 
to be in the real field ~ ,  are arbitrary. I f  however, there is a relation between the 
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vertices of G and the points of the Euclidean 3-space, e3, then the statement is 
true only for n <-4. For n > 4, the {q} have constraints due to distance geometry 
in e3. Such is the case for example in application to molecular structures and/or  
their quantum theory. In the embedded case [2] in the geometric sense, the {G} 
do not form a complete vector space, nor a dyad space, but the {G} can be 
classified [1, 3] into equivalence classes under the linear group L(n, ~). 

Two G's which are in the same L-equivalence class (i.e. G~ ~ 6 2 )  thereby called 
"structurally covariant [1]", can be obtained from each other by simple graph 
manipulations using two "star" and two " loop"  rules given earlier [1]. 

If {(G}:G1 ~ G2"-"  ~Gk}, then they also have the same eigenvalue indices, 
the LPI, {n+, no, n_}, the numbers of +, 0, and - eigenvalues (for GQ~ Q with 
Q = Q+ which is always the case if Go is non-directed). 

Take now two graphs G1, (}2 on V,, both of n-vertices, such that some lines are 
missing {q=0} in G2 that are in G]{q 3 0 ;  + or -}.  

We may have G~ & G2 or GI ~ G2 as may be ascertained by the star-loop rules 

[1]. Suppose G~ ~ (92. We then ask the question, whether G~ can be continuously 
deformed (either in the geometric sense if e3-embedded [2], or in the general 
case of arbitrary line strengths) such that the lines missing in G2 become zero 

gradually while all the intermediate G's, {G}, remain G~ & ~=L ( ~ , . . .  ~ G2. 
The present paper deals with this question of "deformational covariance". 

Example of structurally covariant but deformationally not covariant graphs 
(=sc, #oc)  and of both (=sc )  and ( o c )  cases. Take an n = 4  G, Fig. (l) ,  with 

its line strengths all equal (say q = 1). 
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Fig. ] 

By the star-rules [1], if in (I) vertex d is multiplied by (-1) ,  then taken over to 
b, two lines get elimintated. Multiplying then e with ( -1 )  and moving it onto a, 
the last graph in Eq. (1) results, which by the way also shows that no = 2, n+ = n_ = 1 
for the initial G. The three G's  in Fig. (1) are structurally covariant. 

What about now trying to get from graph-I to II, then to III not by the star rules 
but by stretching out some of the lines till they break? Will the LPI remain the 
same in the process? We can easily see that the answer depends on the type of 
deformation. 

If we stretch out b so that q,b and qbc remain equal to each other throughout, 
the LPI is preserved, and GI =DCGu along this path. (Proof: multiply d by 
K = --qab at any value of %b, then take it onto b). 
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I f  on the other hand, we attempt to stretch only the (ab) first, then (bc), the LPI 
goes from {no=2, n§  n_ = 1} to {n+=2,  n_=2} initially. Such a path therefore 
does not lead to deformational covariance, even though the end graph =sc. 

Thus in comparing two graphs some deformation paths from one to the other 
continuously preserve linear covariance [4], some may not. The G~ = DCG2 along 
the former paths. 

Theorem ofdeformational covariance: Given some graphs GI, G 2 , . . .  on V, with 
some of  their lines differing in their strengths from graph to graph (including 
cuts, q = 0), if throughout continuous variations of  those strengths (along some 
paths or modes), the graphs and their intermediates remain structurally covariant, 
then G~, G2,... are deformationally covariant (along those paths or modes). To 
ascertain deformational covariance (~Dc)p, the star-loop rules [1] are applied 
for continuously varying strength values (for each mode possible). 

Proof  is immediate from =sc theorems [1] applied at each value of each varying 
line strength (including at the q = 0 points where e.g. q goes from - to +). 

Applications: a) In the quantum theory of chemistry and in structural chemistry, 
structural electronic diagrams for a given set of  atoms differing in some lines 
correspond to isomers. Deformational covariance along some paths means there 
will not be much activation energy required, qualitatively speaking, along such 
"reaction paths".  This principle [1--4] is considerably more general than the usual 
use of  only the point group symmetries (cf. Refs. given in Ref. 1 and Ref. 3 of  
this paper)  where they exist. 

b) Molecular orbital theories [5] involve one and two center interaction parameters 
in their Hamiltonians. The present theory allows one to find out whether any 
qualitative conclusions from such methods would change as parameters are varied. 

c) Dynamical  stability [6] of  coupled reaction systems whether in chemistry, 
ecology, or economics, may be treated by certain networks which are graphs of 
two kinds of  lines and two kinds of  vertices [7]. The "rate constants" of  
elementary reaction steps in these may be associated with "strengths" of one 
kind of  line. Then, how the qualitative dynamics and stability behavior (even in 
the non-linear cases which are common there) are affected within regions of  the 
parameter  ("rate constant") space, can be ascertained by the methods of the 
present theory [1-4, 7]. 
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